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1 Introduction and summary

Not too long ago, it would have seemed highly unlikely that results from quantum gravity

and string theory would find their way into discussions of condensed matter physics. This

began to change with an improved understanding of non-perturbative string theory, and

especially in the past few years with the steadily growing appreciation of the usefulness

of AdS/CFT duality for studying strongly coupled quantum field theories, examples of

which abound in condensed matter physics. It is natural to try to forge this connection

in systems exhibiting some degree of universality, which has led to a focus on the physics

near quantum critical points. The quantum critical point itself is achieved by going to zero

temperature and tuning the appropriate coupling constants; however its existence controls

the physics in a finite neighborhood transition region that spreads from it. Similarly, the

dual gravity theory can have an AdS description that extends to the transition region. The

dual description can then be used to study transport at non-zero temperature near the

critical point, among other things. This is helpful when it is difficult to perform standard

calculations based on traditional models of interacting quasiparticles. For more discussion,

see e.g. the recent reviews [1–3].

In this paper we consider AdS dual descriptions of quantum phase transitions corre-

sponding to transitions between different (integer or fractional) quantum Hall plateaus,

modeled by a system of intersecting branes [4] (see also [5]). These branes typically have

a single mutually transverse direction, and the transition is realized by taking the brane
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separation to zero, and then continuing through to the other side. We will give analytical

results for DC electrical conductivities valid for a wide class of transitions. In the middle

of the transition (i.e. at the critical point), we will compute the longitudinal and trans-

verse AC conductivities at finite temperature. We will then compare the results to those

obtained by Sachdev [6], who studied finite temperature transport near a fractional quan-

tum Hall critical point in a simplified field theoretic toy model proposed by Chen, Fisher

and Wu [7]. The model has Dirac fermions coupled to a U(1) Chern-Simons gauge field,

converting the fermions to anyons representing the quasiparticles of a fractional quantum

Hall state. The system undergoes a quantum transition to an insulator when the mass

of the fermions is taken to zero and its sign is reversed, much like what happens in the

intersecting brane model.1

In general, a system undergoing a quantum phase transition has two qualitatively

different regimes of charge transport [8, 9], depending on the ratio of the frequency of the

current and the temperature, ω̂ ≡ ~ω/kBT : i) collision-dominated low frequency regime

ω̂ ≪ 1, and ii) phase-coherent high frequency regime ω̂ ≫ 1. In the latter, charge carriers

are excited by the external perturbation, and do not collide with thermal excitations.

A characteristic feature is that at the scale invariant quantum fixed point the dynamic

conductivity becomes a universal function of ω̂ [8]. In 2+1 dimensions (which we focus on),

σ(ω) = σ0Σ(ω̂) , (1.1)

where σ0 is the quantum unit of conductance (σ0 = e2∗/h where e∗ is the carrier charge)

and Σ(ω̂) is the universal function. In the limit ω̂ → ∞, corresponding either to the high

frequency limit ω → ∞ at finite T , or the zero temperature limit T → 0 at finite fre-

quency, the conductivity approaches the universal conductivity σ0Σ(∞), where Σ(∞) is

a pure number, independent of the microscopic details of the system, and can be used to

classify quantum critical points. In our dual models this limiting value will be related to

an effective brane tension.

The expected characteristic behavior of the real part of the complex valued function

Σ, often denoted by Σ′, is sketched in figure 1 (following [8]). It depicts a Drude peak2 at

small ω̂, and in the collisionless regime ω̂ ≫ 1 the asymptotic behavior of Σ′ is determined

by the scale invariance at the critical point. In particular, the conductivity is expected

to become temperature independent in the high frequency limit, and then dimensional

analysis forces Σ′(ω̂) to go to a constant in this limit. In our model, the conductivity at

the finite temperature critical point is actually frequency independent; this is the same

phenomenon as was observed in [10], and for the same underlying reason. In order to get

interesting frequency dependence we further deform the theory by turning on a nonzero

charge density and magnetic field. Upon so doing, we will find that the characteristic

behavior of the conductivity agrees with the expectation of figure 1.

In particular, we will compare our results against those of Sachdev [6], and find un-

expectedly good agreement. For the comparison, it is interesting to note that in [6] the

1In the latter, the transition to zero conductivity is also easily obtained using multiple branes.
2We note that a Drude peak is not necessarily a generic phenomenon, and may be absent in theories

with no small expansion parameter such as 1/N or ǫ = 4 − d.
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ω̂

Σ′

Figure 1. Σ′ as a function of ω̂.

results come from various detailed calculations. The Hall conductivity is given entirely by

perturbative contributions, reducing to coherent transport of externally created particle-

hole pairs, while the longitudinal component also receives a contribution from incoherent

collision effects [6]. The analysis is quite tricky even in the simplified model, and some

discontinuities remain as artifacts in the final plots of the conductivity. Given the different

ingredients that go into the analysis, it is quite remarkable that we find the dual D-brane

construction to give such a good match (fitting just two parameters already gives a good fit

to the overall shape, and the third parameter fits the asymptotic behavior) to the results

of [6]. The comparison is presented in figures 2 (a) and (b). On the other hand, it should be

kept in mind that there are some important differences. Namely, the model studied in [6]

is a scale invariant theory, while we are breaking scale invariance by including a nonzero

charge density and magnetic field.

As in other AdS setups, numerical methods are needed to compute the AC conductiv-

ities for general values of parameters. However, we are also able to to find some analytical

results in special cases. One case is for the DC conductivity, where we can compute the

Hall and longitudinal conductivities during the transition for general values of charge and

magnetic fields. Another example is that we can give an almost analytical expression (i.e.

in terms of an integral) for the AC response at the transition point in the presence of a

small charge and magnetic field. We are not aware of other cases where it is possible to

find such a result. We can also give an analytical derivation of the response in the high

frequency limit, including the subleading behavior in 1/ω. All of these analytical results

of course agree with our numerics in the appropriate regime.

Our calculations follow the logic of earlier work on dual models of charge transport,

see e.g. [10–14] and the reviews cited above. Studies of the quantum Hall effect in string

theory include the early work [15–17], a recent AdS dual model [18] which utilizes the

construction in [19], and the most recent constructions [20, 21] inspired by the ABJM [22]

model for M2-brane dynamics.
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Figure 2. Longitudinal conductivity σxx and Hall conductivity σxy a) from the D-brane model

and b) from Sachdev’s analysis [6]. Real parts are depicted by the solid curves and imaginary parts

by the dashed lines. The plots in a) use parameter values ρ̂ = 15.1, B̂ = 1.4, τ = 0.3 of the model.

2 Quantum Hall critical points from intersecting branes

A quantum Hall plateau transition describes a jump in the transverse conductivity σxy

of a 2 + 1 dimensional system of charged particles as one varies some control parameter.

There are a number of different physical mechanisms and control parameters that give rise

to this behavior. In the original, experimentally realized, transition, the system consists of

electrons subject to disorder, with the control parameter being an external magnetic field.

A realization that arises naturally in string theory uses the fact that nonzero transverse

conductivities are generated by integrating out massive fermions. In field theory terms,

the statement is that one-loop diagrams for charged fermions induce Chern-Simons terms

for external gauge fields. Furthermore, the sign of the Chern-Simons terms, and hence the

sign of contribution to σxy, is correlated with the sign of fermion mass (recall that in 2 + 1

dimenions a fermion mass term is parity odd.) Thus a plateau transition arises if one (or

more) fermion masses is smoothly tuned through zero [23].

Such a situation is achieved in string theory by considering various intersecting brane

configurations [4]. If the fermions arise from open strings connecting distinct branes, then

the mass is tuned by adjusting the relative separation of the branes in some mutually

transverse direction. The external gauge field can be taken to be the gauge fields living on

the branes (using a bulk gauge field is also an option in some cases).

Particular interest attaches to the critical theory right at the transition point where

some fermions are becoming massless. Geometrically this arises when the intersecting

branes coincide, and there is a nontrivial critical theory living on the intersection. To

– 4 –
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apply gauge/gravity duality in this and other contexts, it is convenient to take the branes

carrying the external gauge field (which we’ll refer to as the “electromagnetic field”) to be

probes living in the near horizon geometry produced by the other branes. This is valid

provided that the number of probe branes is small, and indeed we will typically take only a

single probe. In the cases of interest the probes live in a geometry of the form AdSd+1×X,

where at finite temperature the AdS factor is replaced by a black brane solution.

We then look for a family of probe embeddings labeled by a parameter corresponding to

the brane separation, or equivalently the fermion mass. Using standard AdS/CFT methods

we can compute the conductivities with respect to the electromagnetic field. Here, our main

focus is on the critical point itself, achieved when the probe brane extend all the way down

AdS into the throat or horizon, and we will compute the AC longitudinal and transverse

conductivities of the system.

We now describe two specific realizations of these setups. The impatient reader could

skip to section 3, where we summarize the main results and go on to compute electri-

cal transport.

2.1 D3-D7 system

The brane construction [4, 5] contains N7 D7-branes intersecting N3 D3-branes over 2 + 1

dimensions, summarized by:

0 1 2 3 4 5 6 7 8 9

D3 : × × × ×
D7 : × × × × × × × ×

(2.1)

This intersection has six mixed Neumann-Dirichlet directions, hence it is non-

supersymmetric but tachyon free. The massless sector (when the branes coincide in x9)

consists of N = N3N7 complex two-component fermions. The model focuses on the 2+1

dimensional low energy theory of these fermions. They have various interaction terms

suppressed by powers of the string scale. With the D3-branes located at x9 = 0 and the

D7-branes at x9 = L, the plateau transition arises by smoothly varying L from a negative

to positive value, or vice versa.

At strong coupling the system is described by the gravitational dual, which is tractable

in the probe approximation [24] N7 ≪ N3. In this limit, for large N3 and gN3, one can

treat the D7-branes as probes in the supergravity geometry produced by the D3-branes.3

The near horizon geometry at finite temperature is

ds2 =
r2

R2
(−hdt2 + d~x2) +

R2

r2
h−1dr2 +R2dΩ2

5 (2.2)

with

h = 1 − r4+
r4

. (2.3)

If we write

dΩ2
5 = dψ2 + sin2 ψdΩ2

4 , (2.4)

3See e.g. [25] for a general review on duality constructions with interescting branes.
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Figure 3. Finite temperature probe embeddings (from [4]). The vertical axis is x9 = r cosψ, and

the horizontal is r sinψ. Each embedding asymptotes to some particular x9 value, x9 = L. The

black hole embeddings shown in (b) can also be characterized by the angle ψ0 at which they enter

the horizon. See [4] for discussion of the meaning of rcrit+ .

then we can identify the coordinate x9 in (2.1) as

x9 = r cosψ . (2.5)

The parameters R and r+ are related to the number of D3-branes and the Hawking tem-

perature by the standard formulas

N3 =
R4

4πgα′2
, T =

r+
πR2

. (2.6)

The profile of the probe D7-brane is found by solving the equations of motion derived

from the Born-Infeld action. The probe lies at some fixed x3 location, say x3 = 0. At

the boundary we impose the boundary condition x9 = L, but then allow x9 to vary as we

move into the bulk; this captures the interactions between the D3 and D7 branes. In the

angular coordinates we thus allow for a nontrivial profile ψ(r). At fixed ψ the probe wraps

an S4 ⊂ S5, and so our full probe geometry wraps an r dependent S4. This S4 either

shrinks to zero size at some r > r+, in which case we have a “Minkowski embedding”, or it

reaches at finite nonzero size at r = r+, yielding a “black hole embedding”. The different

embeddings are sketched in figure 3.

The probe action consists of two parts: the Born-Infeld action and the Wess-Zumino

term which includes the coupling to the background fluxes. The latter contribution will

reduce to a Chern-Simons type action, and will be discussed in 2.3. We will first focus on

the Born-Infeld action. Starting from the D = 7 + 1 dimensional Born-Infeld action and

assuming that the worldvolume gauge field has no components tangent to the S4, we can

integrate over the S4 to arrive at a D = 3 + 1 dimensional action of the form4

S = −
∫

d4x τ(r)
√

− det(g4 + F ) . (2.7)

4we set 2πα′ = 1.
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The radius dependent brane tension τ(r) takes into account the radius dependent size of

the wrapped S4, and is given by

τ(r) =
N3N7

3π2
sin4 ψ(r) . (2.8)

For the purposes of computing electrical conductivities, it is most convenient to write

the induced metric g4 in terms of Eddington-Finkelstein coordinates, as in [28]. To do so,

we need to take into account that the induced metric depends on the profile ψ(r). We can

absorb this dependence by defining the new radial coordinate

r̃ =

∫ r

r+

dx
√

1 + h(x)x2ψ′(x)2 . (2.9)

The advanced coordinate is then v = t+ r∗ with dr̃
dr∗

= r2

R2h. The induced metric takes the

form

ds2 = 2dvdr̃ − U(r)dv2 +
r2

R2
dxidxi (2.10)

with

U =
r2

R2
h =

r2

R2
− r4+
R2r2

, (2.11)

and r understood to be a function of r̃ via (2.9). The profile function ψ(r), together with

the field strength F , can now be computed from (2.7).

The preceding discussion glossed over one important point. As discussed at length

in [4], the L = 0 embedding, ψ = π/2, is unstable, a reflection of the repulsive D3-D7

force. We are going to ignore this issue in the remainder of this paper. One justification

is that the instability can be cured by constructions which lead to essentially the same

structure; for instance, the next example we discuss, probe D6-branes in the ABJM theory,

does not suffer from any instability, but has an effective action of the same basic form

as (2.7). We expect there to be many other such examples.5

2.2 D6-branes in ABJM

The ABJM gauge theory [22] is based on a U(N)k × U(N)−k Chern-Simons theory with

bifundamental matter, and is dual to IIA string theory on AdS4×CP 3. Massless hypermul-

tiplets transforming in the fundamental representation are realized by D6-branes wrapping

AdS4 × RP 3 [21, 26, 27]. To obtain a Chern-Simons term for the D6-brane gauge fields

we need to add M units of NS-NS 2-form flux, which shifts one of the gauge group factors

to U(N −M), and we also need to give mass m to the hypermultiplets. This results in a

Chern-Simons term proportional to M , with a sign correlated with m [21]. Then as above,

a plateau transition is realized by a family of massive embeddings that interpolate between

opposite sign mass terms.

To be more explicit, the IIA metric is

ds2 = ds2AdS4
+ 4L2ds2CP 3 (2.12)

5The paper [14] introduces an additional flux on the D7-branes; this stabilizes the probe but precludes

the possibility of a QHE transition, since it turns out that the probe must always enter the horizon.
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where ds2AdS4
refers to a radius L AdS spacetime (or at finite temperature, a black brane).

Writing the metric of CP 3 as

ds2CP 3 = dξ2 + cos2 ξ sin2 ξ(dψ +
cos θ1

2
dφ1 −

cos θ2
2

dφ2)
2 (2.13)

+
1

4
cos2 ξ(dθ2

1 + sin2 θ1dφ
2
1) +

1

4
sin2 ξ(dθ2

2 + sin2 θ2dφ
2
2) (2.14)

the massless embedding consists of setting ξ = π/4, θ1 = θ2, and φ1 = −φ2.

Massive embeddings are obtained by allowing for a nontrivial profile ξ(r), just as in the

D3-D7 system above. Taking into account the background fluxes and integrating over the

compact space, the resulting Born-Infeld actions is of the same form as in (2.7) but with

τ(r) = 2πkL6
√

1 + b2 cos2 2ξ sin 2ξ . (2.15)

Here b = M/(2kL2).

The induced metric takes the form (2.10) but with

U =
r2

L2
h =

r2

L2
− r3+
L2r3

. (2.16)

and the rescaled radial coordinate is now

r̃ =

∫ r

r+

dx
√

1 + 4(1 + b2)h(x)x2ξ′(x)2 . (2.17)

To work out the explicit profile ξ(r), and to verify the stability of the massless em-

bedding, we should use the full action, which contains the Wess-Zumino coupling to the

RR fluxes in addition to the Born-Infeld term. However, for our computations of AC

conductivities we only need the Born-Infeld part.

2.3 Chern-Simons terms

A quantum Hall plateau transition corresponds to a change in the DC Hall conductivity

σxy. From the effective action point of view, this corresponds to a change in the coefficient

of the Chern-Simons term for the electromagnetic gauge field. At weak coupling, when the

CFT description is valid, the Chern-Simons term arises from integrating out the massive

fermions. At strong coupling, in the gravitational description, Chern-Simons terms arise

from an interaction of the probe brane with background fluxes. The corresponding Chern-

Simons coefficient depends on the probe embedding, and can change from one quantized

value to another as we evolve through a family of embeddings. This is the mechanism used

in [4] to describe a plateau transition.

After integrating over the compact space and the radial coordinate, the induced Chern-

Simons term in our examples takes the form

SCS =
k(ψ0)

4π

∫

A ∧ F , (2.18)

where ψ0 denotes the angle at which the probe brane enters the horizon (this would be ξ0
for the ABJM example). As we evolve through a family of embeddings, ψ0 evolves and

– 8 –
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induces a transition in k(ψ0). The Chern-Simons term has the sole effect of contributing to

the DC Hall conductivity as σxy = k
2π . In what follows, we will be computing contributions

to the AC conductivity from the Born-Infeld part of the probe action, but we should always

remember to add on the Chern-Simons contribution. When we sit right at the critical point

of the transition there will be no such contribution since the probe brane embedding is then

parity invariant (there could however be a nonzero contribution from other background

probe branes with different emebeddings).

3 Conductivity for general backgrounds

Based on the two examples discussed in the previous section, we now introduce a general

class of models to holographically describe quantum Hall plateau transitions and their

critical points. We take the metric

ds2 = 2dvdr − U(r)dv2 + V (r)dxidxi (3.1)

with i = 1, 2. At this stage U(r) and V (r) are general functions compatible with describing

an asymptotically AdS4 black brane metric.6 We thus impose

U(r), V (r) ∼ r2

R2
as r → ∞ . (3.2)

We assume that there is a horizon at r = r+ at which U vanishes linearly in r − r+, and

V (r+) 6= 0.

As in the examples, we take the probe action to be a sum of two terms. First, there is

the Born-Infeld part with a radius dependent tension7

SBI = −
∫

d4x τ(r)
√

− det(g + F ) (3.3)

This radius dependent tension can be thought of as being due to the brane wrapping an r de-

pendent internal space. At r = ∞ the tension goes to a constant; we impose this by writing

τ(r) = f(r)τ∞ , lim
r=∞

f(r) = 1 . (3.4)

There is also the Chern-Simons term

SCS =
1

4π

∫

dk(r) ∧A ∧ F . (3.5)

The function f(r) arises from the pullback of the bulk fluxes onto the worldvolume. The

Chern-Simons level is given by integrating over the radial direction,

k =

∫ ∞

r+

dr∂rk(r) . (3.6)

6As before, the metric takes the form ds2 = 2dvdr̃ − U(r)dv2 + V (r)dxidxi, with r understood to be a

function of r̃ as in (2.17). But since in this section we consider arbitrary functions U and V , we can can

just as well simplify notation and relabel r̃ as r and write the metric as in (3.1). Asymptotically r̃ = r, and

so the leading large r behavior shown in (3.2) is unchanged.
7Recall that we are setting 2πα′ = 1.
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As described in the previous section, quantum Hall transitions are realized by ad-

justing the transverse separation L between branes. In the current framework this means

adjusting the embedding of the probe, which in turn leads to a one-parameter family of

functions τ , U , and V . The parameter L thus controls the transition, in analogy to how

an external magnetic field B controls the more familiar plateau transition governed by

electronic Landau levels.

Even though we do not need to turn on a magnetic field to describe a transition, it is

nonetheless natural to do so, along with a nonzero charge density. As we will see, in the

absence of these parameters the conductivities turn out to be independent of frequency,

even at finite temperature. With nonzero charge and magnetic field we find a nontrivial

frequency dependence, allowing us to compare with the model of [6]. However, it should

be kept in mind that these parameters introduce additional length scales into the problem,

while in the model of [6] the only scale is set by the temperature.

The gauge field equations of motion following from (3.3) admit the following solution:

F
(0)
12 = B , F (0)

rv =
ρ(r)/τ(r)

√

ρ(r)2/τ(r)2 +B2 + V (r)2
. (3.7)

We immediately see that B corresponds to an external magnetic field in the boundary

theory. We have also introduced a radial dependent charge density ρ(r), defined by

ρ(r) =
∂L
∂Frv

. (3.8)

The gauge field equations of motion determine the radial dependence as

∂rρ(r) =
B

2π
∂rk(r) . (3.9)

The standard holographic dictionary identifies the boundary charge density as

ρ = ρ(r)|r=∞ . (3.10)

To study the electrical conductivity in linear response we now wish to add a small

electric field and compute the resulting current. We consider electric fields and currents

that are independent of xi, but with a general v dependence. We break up the gauge field

into a background part plus a small fluctuation:

Aµ = A(0)
µ + aµ , (3.11)

and we’ll denote the field strength of aµ as fµν . The boundary electric field is then

Ei(v) = lim
r→∞

fvi . (3.12)

Note that v plays the role of time on the boundary.

As with the charge density, we introduce a radius dependent current as

ji(v, r) =
∂L
∂fri

, (3.13)

– 10 –
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whose radial dependence is given by the ai equation of motion,

∂rj
i(v, r) =

1

2π
∂rk(r)ǫijEj . (3.14)

The boundary current is then computed as

ji(v) = ji(v, r)|r=∞ . (3.15)

Given our assumptions about the asymptotic form of the metric, this works out to be

ji(v) = lim
r→∞

(
r2

R2
fri + fvi)τ∞ . (3.16)

The entries of the conductivity tensor are defined by

ji = σijE
j . (3.17)

Due to rotational invariance we have σxx = σyy and σxy = −σyx. To compute σij we need

to solve the gauge field equations of motion, subject to the boundary condition (3.12), and

then compute the current from (3.16). In doing so, it is also crucial to impose smoothness

of the solution at the horizon r = r+. Eddington-Finkelstein coordinates cover the future

horizon but not the past horizon, so our smoothness condition is really a statement about

the behavior of the solution at the future horizon only. This condition is equivalent,

but more general, than the condition [29] of imposing “ingoing boundary conditions” at

the horizon. It is more general since it extends beyond linear response [28], though this

advantage will not be relevant here.

Since we are describing linear response, we only need the action for quadratic fluctua-

tions of the gauge fields. The Born-Infeld part is

S =
1

2

∫

d4x
τ(r)√

∆0

[

2V frifvi − 2BF (0)
rv ǫijfvifrj + UV frifri

]

(3.18)

with

∆0 = (B2 + V 2)(1 − (F 0
rv)

2) =
(B2 + V 2)2

ρ(r)2/τ(r)2 +B2 + V 2
. (3.19)

The Chern-Simons part is

SCS = − 1

4π

∫

d4x∂rk(r)ǫijaifvj . (3.20)

The nontrivial Maxwell equations take the form

∂r

[(

A(r)δij +B(r)ǫij

)

fvi + C(r)fri

]

+ ∂v

[(

A(r)δij −B(r)ǫij

)

frj

]

= − k′(r)

2πτ∞
ǫijfvj (3.21)

with

A =
f(r)V√

∆0
, B =

f(r)F
(0)
rv B√

∆0
, C =

f(r)UV√
∆0

. (3.22)
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Under our assumptions the large r behavior of these functions is

A ∼ 1 , B ∼ 0 , C ∼ r2

R2
. (3.23)

Choosing the gauge ar = 0 the equations of motion become

C∂2
rai + (2A∂v + C′)∂rai + (A′δij + B′ǫij)∂vaj = − k′(r)

2πτ∞
ǫij∂vaj . (3.24)

Next, we give the components (av, ai) a harmonic time dependence e−iωv , and form

the complex combinations

a± = ax ± iay , (3.25)

leading to

C∂2
ra± + (C′ − 2iωA)∂ra± − iω(A′ ∓ iB′)a± = ± k′(r)

2πτ∞
ωa± . (3.26)

Asymptotically AdS solutions will have asymptotic behavior

a± = a
(0)
± +

R2

r
a

(1)
± + · · · (3.27)

This gives an electric field and current

E± = fv± = −iωa(0)
± , j± = τ∞(−a(1)

± − iωa
(0)
± ) . (3.28)

The conductivities are therefore

σ±(ω) =

(

1 − i
a

(1)
±

ωa
(0)
±

)

τ∞ . (3.29)

In xy coordinates we have

σxx = σyy =
1

2
(σ+ + σ−) , σxy = −σyx =

i

2
(σ+ − σ−) . (3.30)

What we’ve computed above is the contribution to the conductivity from the Born-

Infeld part of the probe action. As discussed in section (2.3), in general we should also add

in the contribution from the Chern-Simons term on the probe, which shifts the DC Hall

conductivity by the amount σxy = k
2π .

Computation of the AC conductivity has now been reduced to solving (3.26). In

general, this requires numerical analysis and specific choices for the functions τ , U , and

V . In particular limits we can solve the problem analytically, as we discuss in the next

few sections. In the following we will always be assuming that the probe is described by a

black hole embedding; this is necessary in order for the dissipative part of the conductivity

to be nonzero, since for a Minkowski embedding there is nowhere for energy to flow out of

the system (at least in the probe approximation).
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3.1 DC limit

First consider the ω → 0 DC limit. In this limit we can compute the conductivities in the

general case. This includes the DC conductivity at and away from the critical point for

our entire class of theories. A similar computation was given in [30]. Looking at (3.29), we

see that to compute the DC conductivity we need to compute a± to first order in ω.

At zeroth order the equation of motion (3.26) becomes

∂r(C∂ra±) = 0 . (3.31)

Assuming there is a horizon where U vanishes linearly in r− r+, the only smooth solution

is a± = c±, a constant. Plugging this in, we have at the next order the equation

∂r(C∂ra±) = iω∂r(A∓ iB ∓ i
k(r)

2πτ∞
)c± (3.32)

the smooth solution to which is

∂ra±(r) =
iω

C(r)

[(

A(r) ∓ iB(r) ± i
k(r)

2πτ∞

)

−
(

A(r+) ∓ iB(r+) ∓ i
k(r+)

2πτ∞

)]

c± . (3.33)

This has large r behavior

∂ra±(r) ∼ iωR2

r2

[

1 −
(

A(r+) ∓ iB(r+)
)

∓ i
k

2πτ∞

]

c± (3.34)

and so we read off

a
(1)
± = −iω

[

1 −
(

A(r+) ∓ iB(r+)
)

∓ i
k

2πτ∞

]

c± . (3.35)

Using that a
(0)
± = c± + O(ω), we find the DC conductivity

σ± =
(

A(r+) ∓ iB(r+)
)

τ∞ ∓ i
k

2π
, (3.36)

or,

σxx = σyy = A(r+)τ∞ =

√

ρ(r+)2/τ(r+)2 +B2 + V (r+)2

B2 + V (r+)2
V (r+)τ(r+)

σxy = −σyx = B(r+)τ∞ =
ρ(r+)B

B2 + V (r+)2
+
k(ψ0)

2π
. (3.37)

In the last line we have indicated that the Chern-Simons level k depends on the angle ψ0 at

which the probe enters the horizon. From (3.9) the quantity ρ(r+) is related to the actual

charge density as

ρ(r+) = ρ− kB

2π
. (3.38)

Taking k = 0 we can check that our result agrees with that in [30].
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The result (3.37) has some interesting features. First, the conductivities are indepen-

dent of the metric function U . In fact, the only dependence on the original black brane met-

ric is through V (r+), which is a measure of the entropy density of the black brane. In par-

ticular, for a probe embedded in an asymptotically d+1 dimensional black brane geometry,

the entropy density is proportional to
(

V (r+)
)

d−1
2 . The only other theory dependent pa-

rameter is the brane tension at the horizon, τ(r+). So we see that the DC conductivities are

nearly universal functions of ρ, B and the entropy density, with only one additional param-

eter, τ(r+). This is an interesting holographic prediction for a large class of critical points.

One interesting special case is τ(r+) = 0, which gives

σxx = σyy =
ρV (r+)

B2 + V (r+)2

σxy = −σyx =
ρB

B2 + V (r+)2
(3.39)

This value of τ(r+) corresponds to a critical embedding which just touches the horizon.

In can be thought of as the special case for which the black hole and Minkowski family of

embeddings meet. It represents a metal-insulator transition, as can be seen from the fact

that the conductivity vanishes in the absence of a net charge density. What is interesting

is that the conductivities here are universal functions of ρ, B, and the entropy density.

3.2 Small (B, ρ) expansion at the critical point

At B = ρ = 0 the AC conductivity turns out to be independent of ω as a consequence of

electric-magnetic duality in the bulk [13]. For general (B, ρ) we require numerical analysis

to determine the ω dependence. It is useful to consider an expansion to first nontrivial

order in (B, ρ) in order to obtain an analytical expression with a nontrivial ω dependence.

To make analytical progress we will also assume that we are at the critical point of the

transition, which implies that f(r) = 1, and hence constant τ ; recall that this means that

the probe is then wrapping a fixed internal space, not depending on r. Also, recall that

the Chern-Simons term is absent at the critical point.

Setting B = ρ = 0 in (3.26) the solution for a± is simply a constant. Since the

conductivity (3.29) is independent of the overall normalization of a±, we can choose a± = 1

at this order, and also impose this value as a boundary condition at the horizon at every

order in ω.

At the next order we write

a± = 1 + b± , (3.40)

with the boundary condition b±(r+) = 0 as explained above. We expand in the parameter

ǫ ∼ (B, ρ), and we readily find b± ∼ ǫ2. The expansions for the coefficient functions are

A = f(r)

[

1 +
1

2V (r)2
(

ρ̃2 −B2
)

]

+ · · ·

A′ ∓ iB′ = f ′(r) − f ′(r)

2V (r)2
(ρ̃2 +B2) +

f(r)V ′(r)

V (r)3
(B ± iρ̃)2 + · · · ,

(3.41)
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where we are writing ρ̃ = ρ/τ . Substituting in, we find that at this order b± obeys the

equation
(

Ub′± − 2iωb±
)′

= − iω
2

(B ± iρ̃)2
(

1

V 2

)′

. (3.42)

We integrate twice to get

b±(r) =
iω

2
(B ± iρ̃)2

∫ r

r+

dx

U(x)

(

1

V (r+)2
− 1

V (x)2

)

e
2iω

R r

x
dy

U(y) , (3.43)

where we imposed the boundary condition b±(r+) = 0 .

From this we can read off the asymptotic behavior of the full solution to the required

order:

a±(r) = 1 + b±(∞) − 2iω

(

b±(∞) +
(B ± iρ̃)2

4V (r+)2

)

R2

r
+ · · · (3.44)

This finally gives the AC conductivity to order ǫ2:

σ±(ω) = τ − τ

2
(B ± iρ/τ)2G(ω) (3.45)

with

G(ω) =
1

V (r+)2
+ 2iω

∫ ∞

r+

dx

U(x)

(

1

V (r+)2
− 1

V (x)2

)

e
2iω

R

∞

x
dy

U(y) . (3.46)

Equivalently:

σxx(ω) = τ +
1

2
τ(ρ2/τ2 −B2)G(ω)

σxy(ω) = ρBG(ω) , (3.47)

Let us comment on the regime of validity of this result. In solving the differential

equation we kept terms of order ωǫ2 and discarded terms of order ω2ǫ4. Thus we actually

need ωǫ2 to be small, and not just ǫ itself. Hence, for fixed small (B, ρ) the result is valid

for large, but not arbitrarily large, frequencies.

Above we show a plot (figure 4) of the real and imaginary parts of G(ω) in the case

corresponding to the D3-D7 system (and setting r+ = R = 1 by a rescaling), for which

U = r2 − 1
r2 and V = r2.

For small (B, ρ) this leads to excellent agreement with our general numerical results.

We see that G(ω) exhibits oscillations on a scale set by the temperature, ∆ω ∼ r+ ∼ T .

3.3 High frequency limit and universal conductivity

We now turn our attention to the high-frequency limit ω/T ≫ 1 of the conductivity. We

first make some general comments to put our results in context. A condensed matter system

at a quantum critical point is described at large spacetime length scales by a scale invariant

quantum field theory [31]. Within this regime, finite temperature can be introduced into

the quantum field theory, as can additional large length scales corresponding to magnetic

fields and charge densities. One thus has a finite temperature scale invariant QFT deformed

by various operators and charge densities, which is the description that AdS/CFT seeks to

make contact with.

– 15 –



J
H
E
P
1
1
(
2
0
0
9
)
0
1
4

Figure 4. The real (solid) and imaginary (dashed) parts of G(ω). Note the resemblance of the real

part to figure 1.

If we sit right at the fixed point but turn on finite temperature, the AC conductivity

can only be a function of ω/T . As discussed in, e.g., [8] the functional dependence on ω/T

is universal in this regime, with any non-universality suppressed by powers of microscopic

length scales. It follows that large ω is equivalent to small T , and that the conductivity in

the limit ω/T → ∞ defines a universal number in dimensionless units. This number is to

be distinguished from the DC conductivity at the transition, which is defined by the limit

ω/T → 0.

Similarly, we can compute or measure the limiting values of the conductivity in the

presence of nonzero magnetic fields and charge densities. These describe relevant deforma-

tions of the theory, and so are expected to have an important affect at low frequencies but

not at high frequencies.

We can make these points precise. We already computed the general DC conductivity

in (3.36). As seen from (3.37), it is purely a function of quantities evaluated at the horizon,

which accords with general intuition on the relation between AdS radial position and

boundary length scales. The conductivity in the limit ω/T → ∞ is also easily computed.

Examining (3.26) we see that a± is a well defined solution in the limit, and then from (3.29)

we have that

lim
ω/T→∞

σ±(ω/T ) = τ∞ . (3.48)

So in the limit the conductivity is determined purely by the asymptotic brane tension. Note

that this result holds at nonzero (B, ρ), confirming the intuition that these are relevant

deformations, and hence unimportant in the UV.

It is also interesting to discuss the subleading behavior as ω/T → ∞. Interestingly,

this can be determined explicitly for our general class of models at the critical point. We

will take R = 1 by rescaling r to simplify some expressions. We proceed by solving the

– 16 –



J
H
E
P
1
1
(
2
0
0
9
)
0
1
4

differential equation (3.26) as a power series in 1/ω. We write

â± = b0 +
b1
ω

+
b2
ω2

+ · · · (3.49)

At lowest order we find

b0(r) =
c0

√

A(r)
e
± i

2

R r

r+
dr̃

B
′(r̃)

A(r̃) . (3.50)

The integration constant c0 can be chosen arbitrarily since it cancels out of the conductivity.

We choose it so that b0(∞) = 1.

Substituting in the expansion (3.49) into (3.26), we obtain the recursion relation

2Ab′n+1 + (A′ ∓ iB′)bn+1 = −i(Cb′n)′ , (3.51)

which we solve as

bn+1(r) = − i

2
√

A(r)

∫ r

r+

dr̃
C(r̃)b′n(r̃)
√

A(r̃)
e
∓ i

2

R r̃

r
dr̂

B
′(r̂)

A(r̂) . (3.52)

The free integration constant can again be chosen at will, since it can be absorbed into c0.

From the formula (3.29) for the conductivity, we know that a subleading contribution at

large frequency arises from a nonzero 1
r term in the large r expansion of a±. By differen-

tiating (3.52) at large r we find the large r relation b′n+1 = − i
2(r2b′n)′ + . . .. From (3.50)

together with the expressions (3.22) we find that b′0 = −(B± iρ/τ)2 1
r5 + . . .. Together, this

implies that we first get a 1
r contribution at order b3, which behaves for large r as

b3 = const − 3i(B ± iρ/τ)2

4r
+ · · · (3.53)

We then read off the large ω behavior of the conductivity as

σ± =

(

1 − 3

4

(B ± iρ/τ)2

ω4
+ · · ·

)

τ . (3.54)

This result is completely universal, in that it is independent of the precise forms of the

original coefficient functions U and V . From familiar UV/IR reasoning it is not surprising

that the leading high frequency behavior of the conductivity only uses the asymptotic AdS

behavior of the geometry, but here we see that this is also true of the subleading behavior.

We have checked that (3.54) indeed matches on to our numerical results (presented in the

next section) at large ω to excellent accuracy.

The asymptotic result for the conductivity is temperature independent, since the fac-

tors of r+ all canceled out. This suggests that we should be able to understand the sub-

leading term as a property of correlation functions in the zero temperature theory. We can

consider this problem from the point of view of the boundary theory (see also [32, 33] for

related discussion). The conductivity is related to the retarded current-current correlator

according to the Kubo formula:

σij(ω) =
i

ω
Cij(ω, 0) , (3.55)
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with

Cij(ω, q) =

∫

d3xe−iωt+iqx〈[Ji(t, x), Jj(0))]〉 , (3.56)

and where the expectation value is calculated in thermal equilibrium at temperature T .

Since we are considering a spatially homogenous electric field we set q = 0.

Now, Ji is an operator of scale dimension 2, and so Cij(ω) has scale dimension 1. At

T = B = ρ = 0 scale invariance thus fixes Cij(ω) ∼ ω, and hence σij(ω) ∼ ω0, which is

just the usual statement that conductivity is dimensionless in D = 2 + 1.

We now break the scale invariance by turning on nonzero temperature and magnetic

field, which have scale dimensions ∆T = 1, ∆B = 2. We are keeping ρ = 0 for simplicity.

At some order, the large ω expansion of Cij will involve both scales, but we can take as an

ansatz that the first subleading term is T independent. Focussing on σxx, parity forces B

to appear in even powers, and hence the allowed subleading behavior corresponds to

σxx ∼ ω0 + ♯
B2

ω4
+ · · · (3.57)

Computing the coefficient of the subleading term requires knowledge of a four-point func-

tion evaluated at the fixed point, but the fact that the form of (3.57) agrees with our previ-

ous result (3.54) seems to justify the assumption of temperature independence at this order.

4 AC conductivity of finite temperature critical point

We now turn to the computation of the conductivity for generic B, ρ, and ω. To keep the

numerics tractable we will only consider the critical point, which corresponds to setting

f(r) = 1, and hence τ is a constant. For definiteness, we also focus on the particular

example of the D3-D7 system reviewed in section (2.1). For this case, the problem to be

solved is summarized as follows. We need to solve the equation (3.26),

C∂2
ra± + (C′ − 2iωA)∂ra± − iω(A′ ∓ iB′)a± = 0 , (4.1)

where the coefficient functions are given in (3.22) with

f(r) = 1 , U =
r2

R2
− r4+
R2r2

, V =
r2

R2
. (4.2)

We look for a solution with asymptotic behavior

a± = a
(0)
± +

R2

r
a

(1)
± + · · · (4.3)

and then read off the conductivity from

σ±(ω) =

(

1 − i
a

(1)
±

ωa
(0)
±

)

τ . (4.4)

We can do some rescalings to simplify. We first set R = 1, as can obviously be done

by a rescaling of r. To scale out r+ we first introduce

x = r/r+ (4.5)
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so that the horizon is at x = 1. Also define

B̂ =
B

r2+
, ρ̂ =

ρ

τr2+
, ω̂ =

ω

r+
, â± = r+a± . (4.6)

We can then write

A =
x2

√

x4 + B̂2 + ρ̂2

x4 + B̂2
, B =

B̂ρ̂

x4 + B̂2
, C = r2+(x4 − 1)

√

x4 + B̂2 + ρ̂2

x4 + B̂2
≡ r2+Ĉ (4.7)

and our equation (4.1 becomes

Ĉâ′′± + (Ĉ′ − 2iω̂A)â′± − iω̂(A′ ∓ iB′)â± = 0 (4.8)

where now ′ = d
dx .

The asymptotic behavior is now

â± = â
(0)
± +

1

x
â

(1)
± + · · · (4.9)

and the conductivity is

σ±(ω̂) =

(

1 − i
â

(1)
±

ω̂â
(0)
±

)

τ . (4.10)

Given the above, we will compute the conductivity as a function of the rescaled fre-

quency ω̂ and the rescaled parameters ρ̂ and B̂.

4.1 Numerical results

We are now ready to numerically integrate (4.8). We demand that â± is a smooth function

at the horizon x = 1, which we recall is actually a statement about smoothness at the future

horizon, since Eddington-Finkelstein coordinates do not cover the past horizon. Since only

the ratio
â
(1)
±

ω̂â
(0)
±

appears in the conductivity, we are free to choose the horizon boundary

condition â±(1) = 1.

If we evaluate (4.8) at the horizon, where C(1) = 0 and C′(1) = 4A(1), we can solve

for the initial value of â′±(1) as

â′±(1) =
iω̂

(

A′(1) ∓ iB′(1)
)

(4 − 2iω̂)A(1)
. (4.11)

Our initial conditions at the horizon are thus fixed, and we can proceed to integrate outward

in a straightforward fashion.

Figure 5 illustrates the symmetry properties of the conductivities. The real part of

the longitudinal and Hall conductivity is symmetric under the reflection ω → −ω, while

the imaginary parts are antisymmetric. The figure shows the longitudinal conductivity

σxx at ρ̂ = 0, B̂ = 1. A non-zero Hall conductivity requires ρ̂ 6= 0, the figure shows a

plot of σxy for ρ̂ = 0.25, B̂ = 1. The third parameter, the Born-Infeld action coefficient

τ corresponds to rescaling of the y-axis, and determines the asymptotic value of Reσxx.

Here we have set τ = 1.
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Figure 5. Real and imaginary parts of the (a) longitudinal and (b) Hall conductivity, plotted over

a range of negative to positive frequencies to illustrate symmetry and antisymmetry. In (a), the

top (black) curve is the real part and bottom (blue) curve is the imaginary part of the longitudinal

conductivity σxx, for parameter values ρ̂ = 0, B̂ = 1, τ = 1. The value at ω = 0 corresponds to the

DC conductivity σxx = 1/
√

1 + B̂2, a special case of (3.37). In (b), the symmetric (black) curve

is the real part and the antisymmetric (blue) curve is the imaginary part of the Hall conductivity

σxy, for parameter values ρ̂ = 0.25, B̂ = 1, τ = 1.

As the parameter ρ̂ is turned on, the plots develop more structure. Figure 6 depicts

plots of σxx for various values of the parameters ρ̂, B̂. Figure 6 (a) depicts the effect of keep-

ing ρ̂ fixed while B̂ is varied: the peaks of the curves move towards higher frequencies, as

would be expected if they are associated with a cyclotron frequency. Figure 6 (b) illustrates

the opposite choice, keeping B̂ fixed while ρ̂ is varied. The (Drude) peak of the conductivity

grows when charge density increases, as expected. Figures 6 (c) and (d) focus on the real

part of the longitudinal conductivity, showing the effect of larger charger densities for two

fixed values of the magnetic field. When the magnetic field is turned on, (d) illustrates how

the Drude peak grows but also moves to lower frequencies as the charge density increases.

In all figures the real part of σxx asymptotes to one, because we fixed τ = 1.

For the Hall conductivity, the plots are qualitatively similar, except that now the high-

frequency limit gives zero. Figure 7 shows two series of plots for the real and imaginary

part of σxy. The figure (a) shows the effect of varying B̂ while ρ̂ is fixed, and (b) depicts

the opposite case.
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Figure 6. Real part (top curves) and imaginary part (bottom curves) of the longitudinal con-

ductivity σxx. The x-axis is ω/r+. Figure (a) is for ρ̂ = 4.5, the curves represent 5 different

values B̂ = 1, 1.5, 2, 2.5, 3, with colors black, orange, red, green, blue. (b) is for B̂ = 2, with

ρ̂ = 2.5, 3.0, 3.5, 4.0, 4.5, (c) is for B̂ = 0, with ρ̂ = 0, 10, 20, 30, 40, (d) is for B̂ = 10, with

ρ̂ = 0, 10, 20, 30, 40. The values at ω = 0 correspond to the DC conductivity σxx of (3.37).

In figure 2 we give a comparison with the results of Sachdev. Note that many of the

plots in figures 6 and 7 are qualitatively similar to figure 2 of [13]. This suggests that the

first peak may be determined by a cyclotron resonance, which in turn depends on kinemat-
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Figure 7. Real part (non-zero values at ω̂ = 0) and imaginary part (passing through zero at ω̂ = 0)

of the Hall conductivity σxy. Figure (a) is for fixed ρ̂ = 4.5, with B̂ = 1, 1.5, 2, 2.5, 3, plot (b) is for

fixed B̂ = 3, with ρ̂ = 2, 2.5, 3, 3.5, 4, 4.5.

ics [12]. However, for the agreement depicted in figure 2, we need to purposely choose three

parameters (ρ,B, τ) in order to make the curves match up nicely. It is unexpected that we

can do this, since we are comparing four different curves while only tuning three constants.

The cyclotron resonance may not be sufficient to explain the more detailed agreement.

5 Conclusion

Quantum Hall critical points are a very promising arena for applying AdS/CFT methods

to condensed matter physics. Here we studied the AC electrical response in a class of such

critical points, and obtained a variety of analytical and numerical results. One outcome

was the unexpectedly good agreement between our results and those obtained previously

by Sachdev, as displayed in figure 2. We note that the curves match nicely despite the

utterly different computational methods. It would of course be especially interesting

to compare with experimental results for AC transport in these systems, if/when these

become available.

Also encouraging was the high degree of universality exhibited by our results. This

was seen in both the low and high frequency regimes. In the DC limit, we found that the
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conductivities over the entire plateau transition just depend on the entropy density of the

theory and the effective brane tension at the horizon. In the high frequency regime we

found universal results for both the leading and subleading behavior at the critical point.

It is of course precisely such robust quantities that one might hope to compare successfully

with real physical systems.

We have emphasized an interpretation of our critical points in terms of the quantum

Hall effect, but our results can also be viewed in more general terms as modeling 2 + 1

dimensional critical points with nonzero charge density and magnetic field. In this sense,

our probe brane based approach is complementary to that based on using the dyonic black

brane solution as a starting point [10–13]. It might be informative to generalize further

by combining the two sets of ingredients. In the near future we plan to study the poles in

the complex frequency plane that determine the response curves, especially the role of the

cyclotron resonance.
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